

Passive Houses and CO_2 – A good combination!

Sporthalls, officies, restaurant, locker rooms, theatre, ice hall and more:

Demands:

Ice in the icehall

Hot water for making ice, melting snow, showers etc

Ventilation

Heating

Cooling

CO₂-UNIT

CO₂- unit: Free cooling, Icehall, Heat recovery, Geothermal heating

Operating mode:

Autumn, Mild winter and Spring

Outdoor temperatur aboute -2°C and abowe

Autumn, Mild winter and spring Cooling the icehall – producing heat and hot water

CO₂- unit: Free cooling, Icehall, Heat recovery, Geothermal heating

Operation mode:

Winter: -3-4°C and colder

ENERWEX

Cold Winter
Cooling the icehall and working as a ground heat-pump
Producing heat and hot water

CO₂- unit: Free cooling, Icehall, Heat recovery, Geothermal heating

Operation mode:

Summer: Free cooling

ENERWEX⁹

Summer

Cooling the icehall – producing heat and hot water

Cooling the building by Passive cooling

Operation mode:

Summer:

Free cooling with active cooling using the CO₂-unit

ENERWEX⁹

Summer – very hot or high activities in the building Cooling the icehall – producing heat and hot water Cooling the building by Passive- and active cooling

CO₂ as a refridgerant

 $CO_2 =$

Natural, compared with other medias as R134a, R407c etc – low impact on the environment.

 CO_2 – heat recovery: +60 -80°C.

Others – heat recovery: +42 -45°C

Energy effective

Warm heatrecovery.

Same technical system as in most normal groceries, well known.

Low operating costs.

Result PHPP with the icehall

Resultat PHPP CIK med ishall

Kriterium	Krav	Resultat	Uppfyllda?
Årsvärmebehov (uppvärmning)	15 kWh/(m²år)	12,9 kWh/(m²år)	Ja
Värmeeffektbehov	10 W/m ²	12,6 W/m ²	Nej
Kylbehov	15 kWh/(m²år)	3,4 kWh/(m²år)	Ja
Övertemperaturfrekvens (>25°C)	< 10%	-	
PER-behov, totalt	115 kWh/(m²år)	61 kWh/(m²år)	Ja

^{*)} Med genomförda åtgärder som t.ex. sommarventilation

Resultat BBR CIK med ishall

Krav för byggnaden:

Köpt Energi: 65,0 kWh/(m²år)

 U_{m} : 0.6 W/(m^{2} K)

Resultat:

Köpt Energi: 18,8 kWh/(m²år)

 U_{m} : 0.17 W/(m^{2} K)

Byggnaden uppfyller energikraven.

Byggnaden uppfyller kraven på värmeisolering.

Heat demands and gains

Heating load for CIK, -16°C outdoor:

Transmission 90 kW

Ventilation 50% airflow 140 kW

Hot water production 40 kW

Heating load CIK, 0°C outdoor:

Transmission 57 kWVentilation 50% airflow 70 kWHot water production 40 kW

Indoor + 8 °C

Internal heatgains:

Light 80% usage (94 kW)

People 30% present (30 kW)

Heat recovery from icehall

55 kW (after reheating the icehall)

Daytime operation - CIK (the whole building, 12 300 m²), icehall in use:

Heat demand, -16°C outdoor temp.

Transmission -34 kW (Excess)

Ventilation 50% airflow 140 kW

Hot water production 40 kW

CO₂ heatprod.demand

90 kW more than heat recovery produces.

COP 2,4 = about 37 kW electricity effect bought.

Cooling the ice and working as a ground heat-pump.

Heat demand, 0°C outdoor temp.

Transmission -68 kW (Excess)

Ventilation 50% airflow 70 kW

Hot water production 40 kW

CO₂ heatprod.demand

0 kW more than heat recovery.

The heat recovery and internal gains covers the demand.

Temperatures in Knivsta 2012 - 2019

Heat demand covered by normal ice-hall operation

Ice-hall + bore holes

Normaly, the heat recovery from an icehall doesn't even cover the heat demand of the icehall it self....

... but with a Passive House as a base, a ground collector (renewable energy) and, on top, an active CO₂-unit, installed for the activities in the icehall – we...

... cover every comfort- and energy demand in the whole building!

